Weak Solutions for a Simple Hyperbolic System
نویسنده
چکیده
The model studied concerns a simple first-order hyperbolic system. The solutions in which one is most interested have discontinuities which persist for all time, and therefore need to be interpreted as weak solutions. We demonstrate existence and uniqueness for such weak solutions, identifying a canonical ‘exact’ solution which is everywhere defined. The direct method used is guided by the theory of measure-valued diffusions. The method is more effective than the method of characteristics, and has the advantage that it leads immediately to the McKean representation without recourse to Itô’s formula. We then conduct computer studies of our model, both by integration schemes (which do use characteristics) and by ‘random simulation’.
منابع مشابه
Existence of at least three weak solutions for a quasilinear elliptic system
In this paper, applying two theorems of Ricceri and Bonanno, we will establish the existence of three weak solutions for a quasilinear elliptic system. Indeed, we will assign a differentiable nonlinear operator to a differential equation system such that the critical points of this operator are weak solutions of the system. In this paper, applying two theorems of R...
متن کاملBlowup with Small BV Data in Hyperbolic Conservation Laws
We construct weak solutions of 3×3 conservation laws which blow up in finite time. The system is strictly hyperbolic at every state in the solution, and the data can be chosen to have arbitrarily small total variation. This is thus an example where Glimm’s existence theorem fails to apply, and it implies the necessity of uniform hyperbolicity in Glimm’s theorem. Because our system is very simpl...
متن کاملGlobal Attractors for a Semilinear Hyperbolic Equation in Viscielasticity
A semilinear partial differential equation of hyperbolic type with a convolution term describing simple viscoelastic materials with fading memory is considered. Ž . Regarding the past history memory of the displacement as a new variable, the equation is transformed into a dynamical system in a suitable Hilbert space. The dissipation is extremely weak, and it is all contained in the memory term....
متن کاملOn Asymptotic Behavior of Global Solutions for Hyperbolic Hemivariational Inequalities
In this paper we study the existence of global weak solutions for a hyperbolic differential inclusion with a discontinuous and nonlinear multivalued term. Also we investigate the asymptotic behavior of solutions.
متن کاملExistence of global weak solutions to a symmetrically hyperbolic system with a source Existencia de soluciones débiles globales para un sistema hiperbólico simétrico con una fuente
In this paper the existence of global bounded weak solutions is obtained for the Cauchy problem of a symmetrically hyperbolic system with a source by using the theory of compensated compactness. This system arises in such areas as elasticity theory, magnetohydrodynamics, and enhanced oil recovery.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001